This bulletin from the Cooperative Extension Plant Health Clinic (Plant Disease Clinic) is an electronic update about diseases and other problems observed in our lab each month. Input from everybody interested in plants is welcome and appreciated.

The Plant Health Clinic now has a Facebook page: https://www.facebook.com/UAEXPlantHealthClinic/?pnref=story

Follow us on
Twitter https://twitter.com/AR_PlantClinic

[https://www.instagram.com/ar_planthealthclinic/ar_planthealthclinic](https://www.instagram.com/ar_planthealthclinic)

Corn Smut- *Ustilago maydis*

Corn

Corn Smut, caused by the fungus *Ustilago maydis*, can produce startling symptoms, but is generally not considered a serious pathogen. Annual loses seldom exceed 2% where resistant cultivars are grown. Although all above-ground parts of the plant can be infected, Corn smut is most spectacular when kernels are infected. Large galls form instead of normal kernels when the fungus invades the kernels and starts growing. Galls begins as glistening silvery white to greenish white, but eventually darkens and becomes a mass of powdery, dark olive brown to black spores. The incidence of smut is higher on nitrogen rich soils, or recently manured soils. Resistant varieties are the best method of control. Infected plant parts should be removed before they can sporulate. In some parts of the world infected ears are considered a delicacy while the galls are in the fresh soft stage. It is sold fresh or canned as huitlacoche, cuiltlacoche, or maize mushroom.

![Corn Smut - Ustilago maydis](https://www.instagram.com/ar_planthealthclinic/ar_planthealthclinic)

Grant Beckwith, University of Arkansas Cooperative Extension
Corn Smut - *Ustilago maydis*

Joshua Yates, previously University of Arkansas Cooperative Extension

Corn Crazy Top of corn, causal agent *Sclerophthora macrospora*, is widespread in the United States. This disease is one of the several downy mildews that attack corn and sorghum. Symptoms depend on the time of infection and degree of colonization by the pathogen. Excessive tillering (six to ten tillers per plant), rolling, and twisting of the upper leaves, and leafy proliferation of the tassel are common symptoms. Leaves may be narrow, straplike, leathery, chlorotic, and stunted. The oospores are 45-75um in diameter, hyaline to yellow, globose, with granular contents. Sporangia are lemon shaped 30-65 x 60-100, attached to short, simple sporangiophores emerging from stomata. Crazy top is a problem when soils have been flooded shortly after planting or before plants are in the four to five leaf stage. Water trapped in the whorl of small plants can also lead to infection. Soil or leaf saturation for 24-48 hours is enough for infection to occur. There are no chemical controls for Crazy top. Good soil drainage is the only preventative.

Corn Crazy Top - *Sclerophthora macrospora*

Sherrie Smith, University of Arkansas Cooperative Extension

The University of Arkansas System Division of Agriculture offers all its Extension and Research programs to all eligible persons without regard to race, color, sex, gender identity, sexual orientation, national origin, religion, age, disability, marital or veteran status, genetic information, or any other legally protected status, and is an Affirmative Action/Equal Opportunity Employer.
Two types of corn rust infect corn in Arkansas. Common Corn Rust caused by *Puccinia sorghi* is seen nearly every year but doesn’t usually cause serious yield loss. Common Rust development requires relatively cool temperatures (54 to 82 degrees F) and nearly 100% relative humidity for about six hours. Young leaf tissue is more susceptible to infection than emerged leaves. After tasseling, leaves should be relatively immune to further common rust development. Common Rust has cinnamon-brown colored round to elongated pustules that frequently form in bands on the lower part of the leaf. Common Rust pustules form on both upper and lower sides of an individual leaf, distinguishing Common from Southern Rust, which predominately sporulates on the upper leaf surface. Unlike Common Rust, Southern Rust, *Puccinia polysora*, is favored by high temperature. The pustules are smaller, more round and orange in color than common rust. Unlike Common Rust they develop primarily on the upper surface of the leaf. Southern Rust can cause serious yield losses as heavily infected leaves are killed. There are resistant hybrids available. Fungicides labeled for rust control in Arkansas are Tilt, Quilt, Propimax, Stratego, and Headline, among others. Homeowners must rely on garden fungicides containing chlorothalonil. The use of resistant cultivars is recommended when possible.
Southern corn leaf blight

Southern corn leaf blight (*Bipolaris maydis*) is not generally regarded as a serious problem as good resistance to the disease is available. However, early heavy infection in a susceptible cultivar can cause severe damage to leaves, predisposing the plant to stalk rot. Spindle shaped tan lesions with rounded ends, and buff to brown borders occasionally with a red tint, appear first on lower leaves. Race O normally attacks leaves only whereas Race T attacks leaves, leaf sheaths, ear husks, ears, cobs, and stalks. Stalk and leaf sheath infections begin as purple spots that develop tan-gray centers. Control consists of planting resistant varieties, deep tillage to bury debris, crop rotation, and fungicides where warranted. Fungicides such as Tilt are effective against the disease.

Northern corn leaf blight

Northern corn leaf blight is common here in the Midsouth with our warm, humid summers.
The disease is caused by *Setosphaeria turnica*, and causes gray-green, elliptical or cigar-shaped lesions that are 3-15 cm long. Mature lesions become tan with distinct dark zones of sporulation. Northern corn leaf blight can develop very rapidly, resulting in complete blighting of the leaves. There are many resistant cultivars to choose from. Cultural controls consist of deep tillage to bury debris, crop rotation, and fungicides where warranted.

Northern Corn Leaf Blight-
Setosphaeria turnica

Fusarium kernel or ear rot is found wherever corn is grown. The disease can be severe when hot, dry weather occurs at and after flowering. Symptoms are groups or single kernels with whitish pink to lavender fungal growth on kernels and/or on silks. Fungal growth at the tip of the ear has been associated with earworm damage. In severe cases, the entire ear may be covered with the fungus. The causative agents are species of fusarium; *Fusarium moniliforme; F. proliferatum;* and *F. subglutinans*. Infection by fusarium can reduce yields and quality, and result in mycotoxin accumulation in the grain. Fusarium overwinters on crop debris. Plowing under the debris may be helpful. Management strategies consist of debris management, proper fertility, moisture control, and insect control. Hybrids vary widely in their susceptibility.

Corn Fusarium Ear Rot-
Fusarium spp.
Gibberella stalk rot, caused by *Gibberella maydis*, has symptoms that are similar to those of other stalk rots. Plants wilt, the leaves change to a dull green, and lower stalks become straw colored. Red discoloration inside the stalk and disintegration of the pith are diagnostic for Gibberella stalk rot.

Charcoal rot symptoms are similar to other stalk rots. It can be differentiated by the presence of numerous, minute, black sclerotia on the vascular bundles and inside the rind, causing the interior of the stalk to appear gray-black. The causal organism is *Macrophomina phaseolina*, the same fungus that causes charcoal rot in beans. Root stress related to drought and/or too much water can cause charcoal rot.

Anthracnose stalk rot, caused by *Colletotrichum graminicola*, is recognized late in the season by the shiny black color on the outer stalk. The black color may be uniform or blotchy. The stalk can be easily crushed at the point of discoloration. The pathogen may rot several internodes on the stalk. Balanced fertility and good water management reduces the incidence of anthracnose when coupled with cultivars with some resistance.
Weather conditions this growing season have been ideal for corn diseases. **Diplodia ear rot** is most severe when corn follows corn and wet weather occurs shortly after silking. The disease is caused by the fungus, *Stenocarpella maydis*. Symptoms are bleached to straw colored husks. A conspicuous gray to white mycelial growth may be observed over the entire ear. The growth typically starts at the base of the ear and moves upward. The ear may appear shrunken with the infected kernels glued to the husk by the fungal growth. Late in the season, black pycnidia may be observed on the husks, kernels, cobs, and rotted stalks. *Stenocarpella maydis* is also responsible for an important stalk rot of corn. It can be distinguished from other stalk rots by the presence of sub epidermal, minute, dark brown to black pycnidia in the rind tissue of the lower stem. The two most important methods of reducing the incidence of Diplodia ear and stalk rot are crop rotation and fall tillage of corn residue.

Corn Anthracnose Stalk Rot-
Colletotrichum graminicola

![Image of corn stalk with anthracnose stalk rot](image1.jpg)

D.G. White, APS Image Library

Corn Diplodia Ear Rot-
Stenocarpella maydis

![Image of corn ear with diplodia ear rot](image2.jpg)

Sherrie Smith, University of Arkansas Cooperative Extension
Corn-abiotic

Red leaves and/or red stems with barren stalks may be caused by a broken midrib, or low fertility, dense plant populations, aphid or herbicide damage, chewed off silks, or poor timing of silking and pollen shed. An accumulation of sugars and other photosynthetic products in leaves and sheaths of barren stalks produces the red coloration.

Corn Red Leaf (barren cob)- Abiotic

It is not unusual to see kernels abort at the tip of the ear since they are the youngest and the farthest from the incoming food source. This occurs in the blister or early milk stages. Occasionally, kernels may abort in 2 or 3 columns that run the entire length of the ear. Basically, any kind of stress that reduces the photosynthate supply may cause kernel abortion. Drought stress is a major culprit.

Corn Red Leaf - Abiotic

Corn Kernel Abortion - Abiotic

The University of Arkansas System Division of Agriculture offers all its Extension and Research programs to all eligible persons without regard to race, color, sex, gender identity, sexual orientation, national origin, religion, age, disability, marital or veteran status, genetic information, or any other legally protected status, and is an Affirmative Action/Equal Opportunity Employer.
Corn- Branched ear Branched ears develop when pollination of the main ear is poor. This is usually attributable to weather factors at pollen shed.

Corn Branched Ears - Abiotic

We’ve had several examples of poor pollination of corn, resulting in substandard ears. Poor pollination is due to environmental issues such as drought, winds, storms, and nutritional issues.

Corn Poor Pollination - Abiotic

Sherrie Smith, University of Arkansas Cooperative Extension

Corn Stinkbug Damage - Abiotic

Sherrie Smith, University of Arkansas Cooperative Extension

The University of Arkansas System Division of Agriculture offers all its Extension and Research programs to all eligible persons without regard to race, color, sex, gender identity, sexual orientation, national origin, religion, age, disability, marital or veteran status, genetic information, or any other legally protected status, and is an Affirmative Action/Equal Opportunity Employer.
"This work is supported by the Crop Protection and Pest Management Program [grant no. 2017-70006-27279/project accession no. 1013890] from the USDA National Institute of Food and Agriculture."
https://nifa.usda.gov/sites/default/files/resource/Powerpt_usda_nifa_horizontal_rgb_300.jpg