Development of an Inventory Management Tool for Nurseries Using an Unmanned Aerial Platform

INVENTORY MANAGEMENT

- Commonality between growers
- Estimates based on small percent of population
- Inaccurate
- Increasing technological advancements
- Decreasing technology costs
- Increasing labor cost and decreasing availability
- Enhanced inventory projections
- Quantitative analysis at time of harvest

The Future of Nursery Automation

By Ray E. Young

Computerized inventory-handling systems will revolutionize the greenhouses of the future.

Images of American Nurserymen provided by Jim
WHY AERIAL?

- Eliminate issues with terrain
- Cover large area at one time
- Decreased technology costs
- Decreased nursery time and cost
- Increased accuracy
- Data readily available
- Future applications
 - Crop scouting
 - Bare soil imagery
 - Irrigation and drainage planning
 - Academic and Extension Education
Evaluating a More Sustainable Control Release Fertilizer for Ornamental Crops using a Struvite Byproduct from Waste Water Treatment

REMOTE AERIAL PLATFORM

ADVANTAGES:
- Lower cost (< $10,000)
- Ease-of-use; on-demand capability (can be flown by any trained grower/farmer)
- Higher resolution (1 inch)
- Lower altitude (< 400 feet)
- Vertical take-off and landing
- Greater payload capacity than most unmanned aerial vehicles (2.5lbs)
- Multi-rotor platform is more stable and compared to single rotor helicopter
REMOTE AERIAL PLATFORM

- MiKroKopter US, Watsonville CA
- Altitude control
- GPS position
- Waypoints navigation
- Payload: 250 – 1 kg
- Radio control transmitter
 - 2.400 ~ 2.483 GHz
 - 1 – 2 km range
- Total Weight (without battery) 1260 g
- Maximum altitude 350 m
- Maximum speed 8 m/s
Roll and pitch compensated
Shutter and controls can be operated using the R/C transmitter.
Sony NEX-5 camera
 - APS HD CMOS sensor
 - 14.2 megapixels
 - Weight: 10.1 oz (287g)
Sony SEL 16mm f/2.8 wide-angle lens
EXPERIMENTAL DESIGN

• Three Altitudes
 • 35m, 60m, 85m

• Three Production Systems
 • Container
 • Barberry
 • Pear
 • Rhododendron
 • #1, #2, #5
 • Shade Tree
 • Maple
 • Christmas Tree
 • Douglas Fir
Evaluating a More Sustainable Controlled Release Fertilizer for Ornamental Crops using a Struvite Byproduct from Waste Water Treatment

SPECIES AND FORM
CONTAINER OR PLANT SIZE

Images taken at 35 meters
DATA COLLECTION

- Ground truth
- Computer generated count
 - Object based image analysis (OBIA)
- Manual image accuracy count
 - Single
 - Double
 - Triple or greeter
 - Erroneous count (weeds, etc.)
- Accuracy
 - Net
 Measure of all plants correctly identified through OBIA approach compared to manual count
 - Overall
 Measure of overall accuracy of OBIA approach by including missing as well as unidentified points on the analyzed image.
OBJECT IMAGE BASED ANALYSIS

Images of #1 Rhododendron PJM at 35 m
OBJECT IMAGE BASED ANALYSIS

Images of #1 Rhododendron PJM at 35 m
Evaluating a More Sustainable Control Release Fertilizer for Ornamental Crops using a Struvite Byproduct from Waste Water Treatment

Barberry (containerized shrub)

<table>
<thead>
<tr>
<th>Altitude (m)</th>
<th>Net</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>97</td>
<td>95</td>
</tr>
<tr>
<td>60</td>
<td>94</td>
<td>88</td>
</tr>
<tr>
<td>85</td>
<td>97</td>
<td>94</td>
</tr>
</tbody>
</table>

ACCURACY(%)
Pear (containerized shade tree)
Pear (containerized shade tree)

<table>
<thead>
<tr>
<th>Altitude(m)</th>
<th>Net</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>91</td>
<td>83</td>
</tr>
<tr>
<td>60</td>
<td>92</td>
<td>84</td>
</tr>
<tr>
<td>85</td>
<td>99</td>
<td>99</td>
</tr>
</tbody>
</table>
Douglas fir (Christmas Tree)
Douglas fir (Christmas Tree)

<table>
<thead>
<tr>
<th>Altitude (m)</th>
<th>Net</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>95</td>
<td>94</td>
</tr>
<tr>
<td>60</td>
<td>99</td>
<td>97</td>
</tr>
<tr>
<td>85</td>
<td>98</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ground truth</th>
<th>Algorithm</th>
<th>Missed</th>
<th>Double</th>
<th>Triple</th>
<th>Erroneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rhododendron (varying container size)
Rhododendron (containerized shrub of varying size)

Images of #1 Rhododendron PJM at 35 m
CONCLUSIONS

- Today:
 - Obtain images
 - Geographic position
 - Success OBIA count
 - Containers
 - Christmas Trees
 - Unsuccessful OBIA count
 - Impact of altitude
 - Canopy overlap
- Next Steps:
 - Improved algorithm
 - Multispectral imagery
 - Composite imagery
 - Using light and shadows
ACKNOWLEDGEMENTS

- Oregon Association of Nurseries (OAN)
- Oregon Department of Agriculture (ODA)
- J. Frank Schmidt Family Charitable Foundation
- J. Frank Schmidt & Son Co.
- Bailey Nurseries
Commercial Horticulture
Nursery Automation

Team Members

- Dr. Reza Ehsani - UFI
- Dr. Joe Maja - UFI
- Dr. Jim Owen - VPI
- Dr. Chal Landgren - OSU
- Heather Stoven - OSU
- Dr. Dharmendra Saraswat - UofA
- Dr. James Robbins - UofA
- Sam Doane - J. Frank Schmidt & Son Nursery
- Ross Dumf - Bailey Nurseries

PowerPoint Presentations (PDF)

- Quantification of Tree-Geometric Characteristics: Sensor Platform and UAV (PDF) - Dr. Ehsani, September 9, 2010
- On-the-Fly Tree Caliper Measurement (PDF) - Dr. Owen, September 9, 2010
- How Did We Get Here? (PDF) - Dr. Robbins, September 9, 2010
- Remote Sensing for Tree Counting (PDF) - Dr. Saraswat, September 9, 2010
- Aerial Approach to Inventory Management for Container and Field Nursery Production (PDF) - Dr. Ehsani, August 25, 2011
- ANLA ‘Kick-the-Dirt’ Seminar (PDF) - Dr. Robbins, August 25, 2011
- Unmanned Aerial System for Precision Agriculture (PDF) - Drs. Robbins/Saraswat, October 4, 2011
- SNA Research. Conference (PDF) - January 18, 2012

Papers

- Proc. SNA Research. Conference, 2012 (PDF)

Articles

- NM Pro Magazine, November 2010: ‘Picture This’ (PDF)

http://www.aragriculture.org/horticulture/nurseryAutomation/default.htm