Outline

- Getting the most benefit out of a cover crop is directly related to the quality of the stand.
- Establishing a good stand is dependent on:
 - seeding date, seeding rate and weather.
- As the cash crop season approaches the cover crop must be killed out in preparation for the cash crop
 - Roller crimp
 » Effectiveness of different covers with roller
 - Herbicide
 - Strip terminate
- Timing of termination is key to successful integration of cover crops into agricultural systems
Planning For Success

- Ensure good seed depth placement and seed-soil contact
 - Ideal depth is usually 2-3x the diameter of the seed
- Adequate soil moisture
- Adequate soil temperatures
 - Rye 34° F
 - Field Peas 41 ° F
 - Buckwheat 50 ° F
 - Cowpeas 58 ° F
 - Sorghum Sudan 65 ° F
- Inoculate legumes with correct inoculum
- Apply manure?
 - Applied nutrients may be passed to the next crop via the cover crop biomass
 - Opportunity to apply manure to comply with food safety regulations for fruit and vegetable crops
Cover Crop Seeding Methods

Broadcasting, Aerial Seeding

- Seeding depth and placement may be variable, resulting in un-even stands
 - Higher seeding rates
- Doesn’t require specialized equipment
- Hand broadcasting only feasible on small areas; will require tillage pass to push large seeded species to depth

Drilling

- Seeding depth and placement is consistent
 - Lower seeding rates
- Mixes of species that require different seeding depths may be difficult to manage
- Ideal for large areas
Cover Crop Seeding Equipment

- Low tech, low cost
- Higher cost, and more technical
 (Multiple boxes for different species)
Seeding Rate Calibration

- **Low Tech, Broadcasting**
 - *Know your area size (X)*
 - $X \text{ sq ft.} / 43,560 \text{ sq. ft.} = \text{Amount of acre x seeding rate per acre} = \text{amount of seed need for the area}$
 - *Adjust seeder to seed size*

- **Seed Drill**
 - Set drill for seed size
 - Mixes, use the predominant species
 - 100’ test run with drive wheel
 - In field test depth placement
 - *Consult seed drill calibration guides for mixes*
Planting Dates

Winter Cover Crops

- Limiting factor: shortening days and temperature
- Establish legumes and brassicas late summer before cold temperatures
 – In Arkansas: September
- Vernalization of cool season grasses must occur for elongation and optimum biomass production
 – Exposure to cold temperatures induces plant to enter reproductive stages
- Adequate soil temperatures

Summer Cover Crops

- Limiting factor: soil moisture and high heat
- More flexibility where long summers occur
- Time seeding to achieve optimum biomass production prior to next cover crop
 – In AR Late May to Early June
- Adequate soil moisture
- Adequate soil temperatures
Effects of Seeding Date on Biomass

• Seeding date is more critical for fall established winter cover crops
 – Shorter days and cooler temperatures moving into fall restrict plant growth
• Later planting dates in fall have been shown to impact biomass amounts the following spring\(^5\).
 – Low biomass cover crops will compete poorly with weeds in no-till systems.
• Short windows between cash crops and low rainfall in mid-summer also require timely seeding of summer cover crops for proper establishment
• Timing of establishment is important to achieving the goals set for the cover crop; treat the cover crop like a cash crop!
Cover Crop Termination Methods

No-Till
Terminate by herbicide, roller crimper or a combination of the two and left on the soil surface.

Strip-Till
Cover crop terminate in-strips by mowing and tilled into the soil 2-4 weeks before planting. Results in a clean soil surface where rows will be placed and cover crop for weed control in row middles.

Tilled
Terminate by mowing and tilled into the soil 2-4 weeks before planting. Results in a clean soil surface.
Cover Crop Roller Crimper Termination

A roller mechanically lodges the crop and the crimper cuts the stems

↑ Click for video
Percent Termination of Various Cover Crops by Roller Crimper Alone

<table>
<thead>
<tr>
<th>Season</th>
<th>Cover Crop</th>
<th>% Kill</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td>Sorghum Sudan</td>
<td>40-60%</td>
<td>Some re-sprouting of the stems was observed</td>
</tr>
<tr>
<td></td>
<td>Pearl Millet</td>
<td>90-95%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cowpea</td>
<td>0-10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sunflower</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>Austrian pea</td>
<td>15-20%</td>
<td>When planted with a grass, improved roller crimper termination of the grass observed</td>
</tr>
<tr>
<td></td>
<td>Winter wheat</td>
<td>75-80%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cereal Rye</td>
<td>80-90%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crimson Clover</td>
<td>0-10%</td>
<td></td>
</tr>
</tbody>
</table>

Assessments are based off of roller-crimper alone. Herbicide can be combined with a roller crimper in order to get a higher rate of termination. Data is from preliminary trials conducted in AR. Other studies have seen different results with just a roller. Cover crops were terminated at or just after flowering.
Cover Crop Termination Equipment

Roller crimper
Herbicide Sprayer
Walk Behind Mower
Tillage Implements
Flail Mower

10 feet
Cover Crop Termination in Plasticulture Systems

- Cover crop termination in a plasticulture system should be timed to ensure adequate biomass decomposition prior to laying plastic
 - Un-decomposed biomass may interfere with bed laying equipment or tear the plastic
- The biomass should be incorporated in the soil “Green” and should be buried and allowed to sit for 2-4 weeks
- Decomposition rates will be influenced by soil moisture, soil temperature and C:N ratio of the material
 - Grasses that are highly lignified will be slower to decompose
Termination Timing for No-Till Systems

- Roller-crimpers are most effective on grasses and legumes after they have reached their reproductive stage
 - At pollen shed or later is ideal for many grasses
- Nitrogen content is highest in legumes around flowering but prior to seed set
- Termination should occur before cover crops set seed
 - Become weeds later
 - Nitrogen is tied up in the seed
 - Grasses become more lignified at and after pollen shed -> they will break down more slowly
- If pollinator habitat is desired the cover crop should be allowed to flower
Herbicide Termination Timing

- Effectiveness of herbicide termination is dependent on:
 - Herbicide used
 - Herbicide rate
 - Higher rates may be required on young cover crops
 - Coverage
 - Good spray coverage will ensure effective termination
 - Systemic vs. contact herbicides
 - Growth stage of the cover crop
 - After flowering cover crops tend to be more susceptible to herbicide.
 - Air temperature and weather
 - Herbicides are more effective during warm and dry weather
Potential Problems

• If cover crop germination fails and it is too late to re-seed
• If biomass is in-sufficient to achieve weed control in a no-till system
 – Tillage or herbicide application maybe the only course of action
• The cover crop goes to seed and becomes a weed in a later cash crop
• Roller-crimper or herbicide kill is in-sufficient
 – Cover crop re-sprouts

Sorghum Sudan re-sprouting after roller-crimping
Crimson clover germinating after self-sowing
Watermelon in a no-till failure
Take Home Message

• Choose your seeding rate and methods carefully based on the equipment available
• Spend time calibrating seeding equipment
• Plan for the termination method and timing prior to planting the cover crop
• Have a “plan B” if things don’t go as planned
Authors and Acknowledgements

This presentation was prepared by Drs. Amanda McWhirt and Jackie Lee with support from a Southern SARE Professional Development Program Grant (RD309-137 / S001419 – ES17-135) and are provided by the USDA-SARE program to educators and producers for outreach and educational purposes. These presentations were further reviewed by Dr. Trent Roberts and Dr. Bill Robertson.
Resources and Sources

4 Summer Cover Crops Horticulture Information. Leaflets. https://content.ces.ncsu.edu/summer-cover-crops

5 Cover Crop Establishment and Potential Benefits to Arkansas Farmers. https://pdfs.semanticscholar.org/d837/f33acb4bd764597d356f1c5eed1a6b8fb3b2.pdf