Emergency Forage for Spring Pasture
John Jennings, Professor, Forage Specialist

Drought damage lingering from last summer is forcing many producers to think about emergency forages for spring pasture or hay. If winter annuals such as wheat, rye or ryegrass were planted last fall, then managing to increase yield of those forages would be the best option. Even volunteer ryegrass can make significant forage yield if fertilized with nitrogen. It is not too early to fertilize winter annual forages. Nitrogen applied in February will help jump-start forage growth for March and may be enough to end hay feeding for the winter. Fertilizer rates should be 50-60 pounds/acre of N. Apply P and K according to soil test recommendations if needed.

Not all winter annual pastures should be fertilized at the same time unless forage demand can keep up with the growth. The spring growth surge starts with cereal rye, followed by wheat, then with ryegrass reaching peak growth later. If both small grain pastures and ryegrass pastures were planted, fertilize the small grain first and the ryegrass can be fertilized in March. If only ryegrass is available, some pastures can be fertilized in February and others can be fertilized later in March to spread out the growth response to the nitrogen.

Spring oats are an option where no winter annuals were planted in fall. Planting winter oats or winter wheat this late may not be a good option. These forages require a short-day, cold temperature stimulus called vernalization to produce a seedstalk and seedhead. Late-planted winter wheat and oats may not become properly vernalized and would produce low yield. Spring oats can produce a good forage crop but must be planted early. The recommended timeframe for planting is mid-February to mid-March. Seeding rate is a minimum of 2 bushels/acre up to 3 bushels/acre. That is a rate of 64-96 pounds/acre.

Seed of spring oats is available through several seed distributors in Missouri that supply agricultural dealers in Arkansas. (Green Seed in
Springfield and Missouri Southern Seed in Rolla are two examples.) Varieties of spring oats include Jerry, Legett, Ogle and Horsepower. Do not plant “feed oats” because the seed quality is unknown and there is a high likelihood of the seed being winter oats.

Seed should be planted like wheat. It can be drilled or broadcast on a tilled seedbed. Forage growth development will be faster on a tilled seedbed than when no-till drilled into sod. Plant ½ to 1 inch deep. Apply 50-60 pounds/acre N at planting. Forage yield of well-established stands will average 2,000 pounds/acre of dry matter. Earlier-planted stands have a greater yield potential than late-planted stands. Oats mature rapidly when spring temperatures begin warming. Grazing can begin when the forage is 8-10 inches tall. It is important to not begin grazing until the stems begin to elongate (similar to first hollow stem in wheat). Hay should be harvested when the plants reach the early head stage. There is no appreciable increase in dry matter after that point, but forage quality drops rapidly as the crop becomes more mature. Waiting until the early dough stage results in low-quality forage and will increase rodent damage in stored hay.

Spring oats may provide a fairly quick spring forage crop. Other forage management options should also be employed, including improved grazing, fertility management, weed control and deferred grazing to allow other drought-damaged fields to recover.

Managing Perinatal Mortality
David Fernandez, Extension Livestock Specialist, UAPB

Lambing and kidding seasons are upon us, and if you do not yet have lambs or kids on the ground, you probably soon will. Nothing is better than looking out at the fields and seeing the new lambs and kids nursing or playing. But nothing is sadder than early lamb or kid losses. Lambs and kids are most likely to die during the first eight days of their lives, the perinatal period. In a Wisconsin study over a nine-year period, their sheep flock had a 9.9 percent death loss from birth to weaning. About two-thirds of those deaths occurred on the first day of life. Another 18 percent died during the next eight days. That means 84 percent of all lamb deaths occurred between birth and the eighth day of life. There is no similar data available for goats, but it would not be surprising to find they are similar. What this means to you as a goat or sheep producer is you need to do everything you can to reduce your losses during the perinatal period.

The causes of so many of our lamb and kid deaths at birth or in the next few days are usually fairly easy to prevent. In the Wisconsin study, 44 percent of the lambs lost at birth were stillborn. Usually, this indicates an infection like toxoplasmosis, chlamydiosis or leptospirosis. These infections are often the result of poor hygiene. Make sure the paddock in which females are kept is clean and free of excessive manure build-up. If you have a large number of stillborns, check with your veterinarian. Make sure the flock or herd is properly vaccinated about 60 days before lambing or kidding begins.

Another reason for a high number of stillborns might be pregnancy toxemia or ketosis. Ketosis is most common in overconditioned ewes and does but can also be a problem in thin ones. Don’t overfeed, but don’t underfeed either. Remember, too, that newborns from underfed females tend to have lighter birth weights. Lambs smaller than 7 pounds have higher death losses than heavier lambs. Ewes and does should be in body condition score 2.5 to 3 on a 5-point scale (5 or 6 on the 9-point scale).

Nearly 9 percent of the lamb deaths were the result of a difficult birth, called dystocia. Kids and lambs undergoing a difficult birth may not have received enough oxygen while they were being born, may have gotten fluid in their lungs or may just be exhausted. Exhausted newborns don’t have the energy to keep themselves warm or to get up and nurse. Be ready to assist ewes or does within an hour after the birth process begins. Make sure you have all the necessary equipment and that it is clean before

Manage Perinatal Losses

- Keep the paddock clean and free of excessive manure build-up.
- Maintain healthy weights.
- Be prepared to assist with birth.
- Provide shelter from extreme weather.
- Keep an eye on higher-risk newborns.
lambing or kidding season starts. Don’t breed smaller females to larger-framed males. Larger fetuses have more trouble being born than smaller ones. Lambs over 13 pounds tend to have more trouble being born, another reason to avoid overfeeding animals.

The Wisconsin study reported that 5.8 percent of the lambs lost suffocated because the amniotic sac did not break. This is another instance where being prepared and available when birth is imminent can help reduce losses.

Exposure is another major cause of perinatal losses. Almost as many newborns (8.4 percent) died of exposure as died after a difficult birth. Newborn lambs and kids are wet and don’t have a heavy layer of fat and hair or wool to keep them warm on cold, wet days. Putting does or ewes in a simple shelter that will keep newborns dry can be enough to alleviate these losses. If you know an animal will give birth soon, put it in the shelter if the weather is expected to be wet or extremely cold in the next couple of days.

Some causes cannot be avoided. For example, lambs born in larger litters had higher death losses. Ewes lambing for the first time had higher lamb losses as well. But knowing this, you can plan to keep a closer eye on these animals.

The moral of managing perinatal losses is keep your paddocks clean, maintain healthy weights, be prepared to assist with birth, provide shelter from extreme weather and keep an eye on your higher-risk newborns. These simple steps could save you nearly 7.5 lambs or kids out of every 100 born. At $1 per pound for lambs and $2 for kids (February, San Angelo, Texas), you could have an extra $700 to $800 next year.

More on body condition scoring, feeding ewes to maximize reproductive success, the basics of goat reproduction and managing the kidding season can be found in the University of Arkansas Cooperative Extension web site (http://www.uaex.edu/Other_Areas/publications/default.asp).

U.S. and Arkansas Sheep and Goat Inventory Down From 2012

Steven M. Jones, Associate Professor Animal Science

Sheep and lamb inventory in the United States on January 1, 2013, totaled 5.34 million head, down 1 percent from 2012. Breeding sheep inventory decreased to 3.98 million head on January 1, 2013, down 1 percent from 4.0 million head on January 1, 2012. Ewes one year old and older, at 3.14 million head, were 1 percent below last year. Market sheep and lambs on January 1, 2013, totaled 1.36 million head, down 1 percent from January 1, 2012. Market lambs comprised 94 percent of the total market inventory. Twenty-three percent were lambs under 65 pounds, 12 percent were 65-84 pounds, 22 percent were 85-105 pounds, and 37 percent were over 105 pounds. Market sheep comprised the remaining 6 percent of total market inventory.

The 2012 lamb crop of 3.46 million head was down 2 percent from 2011. The 2012 lambing rate was 109 lambs per 100 ewes one year old and older on January 1, 2012, unchanged from 2011.

Sheep and lamb numbers were not reported for Arkansas.

Goat inventory in the United States on January 1, 2013, totaled 2.81 million head, down 2 percent from 2012. Breeding goat inventory totaled 2.32 million head, down 2 percent from 2012. Does one year old and older, at 1.73 million head, were 2 percent below last year’s number. Market goats and kids totaled 490,000 head, up 1 percent from a year ago.

Kid crop for 2012 totaled 1.79 million head for all goats, down 5 percent from 2011.

Meat and all other goats totaled 2.32 million head on January 1, 2013, down 2 percent from 2012. Milk goat inventory was 360,000 head, unchanged from January 1, 2012.

In Arkansas, 2013 total goat inventory was 45,800, down 20 percent from 57,500 head in 2012. Milk goat inventory was down by 19 percent from 4,700 head (2012) to 3,800 head (2013). Meat goat inventory was down 12 percent from 48,000 head (2012) to 42,000 head (2013).

Forage problems resulting from the 2012 drought will extend into 2013. However, many of those problems could be disguised as unplanned pasture improvement opportunities. Not all farms have the perfect forage or livestock system in place. After assessing the drought’s damage to pastures and to livestock herds, producers should seriously think about possible changes and improvements. Some pasture forages were lost or severely thinned. Does that field need to be reseeded, and if so, does it need to be the same forage species or variety? Many livestock herds were culled heavily or dispersed. Before repopulating the herd, a decision should be made whether the previous herd program should be continued or should the strategy change to better match forage options. Assessing the drought damage should also force questions about the forage management program on the farm. Could the grazing and hay systems be made better to avoid such disastrous effects in the next drought? All good questions, but the answers will be unique for each farm. Good assessment of actual damage and weed pressure will be critical. Soil tests for all pastures will be extremely helpful. The following options can help direct forage improvement efforts.

Options

1. **Do nothing and let the surviving forages regrow.**
2. **Try to thicken the thin pastures with more of the same species.**
3. **Add legumes to thin fields.**
4. **Renovate damaged pastures and convert to other forages.**

Option 1 – Do nothing.

Success with this option will be dependent on severity of drought damage, the existing forage species and willingness of the operator to nurse the field back to health. Tall fescue fields are resilient and often produce enough seed in summer to repopulate a drought-thinned stand in the fall. However, armyworms in spring ruined seed production in many fields. Prolonged grazing during drought reduced plant populations further. Careful field observation in fall and early spring will reveal how much reseeding took place. Clovers died out in a majority of fields. White clover is a prolific reseeder, and that seed should germinate in fall. The unfortunate fact is that weeds will germinate at the same time and may overtake the seedling clover. Bermudagrass fields were severely damaged in many areas. Common bermudagrass produces seed, and any surviving rhizomes will regrow next season. Any fields left “as-is” to regenerate on their own will need to be managed like new seedings. This means good management of fertility, weed control and use of deferred grazing. Some thin fescue and bermudagrass fields will eventually fill in, but this may take a year or more. Orchardgrass and clovers will likely need to be reseeded.

Option 2 – Try to thicken pastures with the same species.

Adding seed to fill in a thin pasture can prove beneficial, but it should be managed like a new seeding. Make sure any forage or weed canopy is removed before planting. Fall rains have stimulated a lot of weedy grass growth that can hinder seedling forage establishment. Guessing at a seeding rate based on percent damage is difficult. It is best to use a full seeding rate and plant it properly to make this option effective. Simply spreading a little seed over a weedy field hoping something good will happen has a high chance of failure. Fescue and orchardgrass should be planted in fall. A good option is to plant wheat or rye with either of those forages to provide spring grazing. Do not plant annual ryegrass with fescue and orchardgrass seed. Ryegrass will crowd out most other forages. Plant bermudagrass in late spring.

Option 3 – Add legumes.

Thin pastures provide a great opportunity to interseed legumes. Legumes improve forage quality, reduce N fertilizer need and help fill in thin grass pastures. Clover and other legumes can be overseeded into grass pastures and hayfields during fall or late winter. Fall or late winter seeding is recommended for fescue pastures. Fall seeding is recommended for bermudagrass and other warm-season grass pastures. White and red clovers are popular perennial clovers, and arrowleaf and crimson clovers are popular annual clovers. A set of guidelines and a timetable for planting clover are shown in the following table.
<table>
<thead>
<tr>
<th>Suggested Timeline</th>
<th>Management Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 to 12 months prior to planting</td>
<td>Assess weed pressure and weed species. Start controlling any weed problems in the field where legumes will be planted. Preventing weeds from producing seed to reduce the seed bank in the soil is important. Few good herbicide options are available for controlling weeds in seedling legume stands, so control prior to planting is recommended.</td>
</tr>
<tr>
<td>6 to 12 months prior to planting</td>
<td>Soil test the field and apply lime; begin major fertility adjustments as needed. Request crop code #116 “Legumes Over-Seeded Into Grass Sod” for the proper fertilizer and lime recommendations. Most legumes require higher soil pH and fertility than grasses. Low fertility is a common cause of poor legume stands.</td>
</tr>
<tr>
<td>6 to 12 months prior to planting</td>
<td>Select a legume species compatible with the forage and livestock operation and plan the timeframe for planting. For fescue sod, plant in fall or late winter. For bermudagrass sod, late September through late October is preferred. Plant winter annual legumes in fall.</td>
</tr>
<tr>
<td>2 to 3 months prior to planting</td>
<td>Work with the local agricultural supplier to ensure seed of the desired legume species and variety as well as the correct strain of rhizobia inoculant is on hand at planting time.</td>
</tr>
<tr>
<td>1 month to 1 week prior to planting</td>
<td>Graze or clip grass to leave a sod stubble height of 2 inches on the day of planting. Planting into excessive grass residue and thatch results in poor legume establishment.</td>
</tr>
<tr>
<td>1 month to 1 week prior to planting</td>
<td>Select the planter to be used, make repairs and calibrate for the proper seeding rate. If using rented planting equipment, plan time to clean it from prior users and to get it in working order. Seed can be broadcast planted after dragging or harrowing fields or can be no-till drilled.</td>
</tr>
<tr>
<td>Day of planting</td>
<td>Finish planter calibration and set it to plant at the proper depth. For small-seeded clovers, plant an average of ¼ inch deep. The most common cause of stand failure is planting too deep.</td>
</tr>
<tr>
<td>After planting</td>
<td>Graze the grass canopy until the legumes begin emerging to control competition from the sod and allow more sunlight to reach the new seedlings. Then remove livestock until the legumes reach sufficient size for grazing or hay harvest.</td>
</tr>
<tr>
<td>For stand maintenance</td>
<td>Rotationally graze and fertilize as recommended for the legume.</td>
</tr>
</tbody>
</table>

Option 4 – Renovate damaged pastures and convert to other forages.

Converting damaged fields to different forage species can help extend the grazing season, improve forage quality or reduce fescue toxicity. Make sure the new forage fits the operation because renovation is an expensive and time-consuming process. Pick a new forage based on seasonal forage need. For example, warm-season grasses should be considered in fescue-dominant systems. In bermudagrass- or bahiagrass-dominant systems, select cool-season grasses.

Diversity of seasonal forage species on the farm improves forage production throughout the year. Both cool-season and warm-season forages should be included. In north Arkansas, the ratio of cool-season to warm-season forage should be about two-thirds cool-season and one-third warm-season forage. In south Arkansas, this ratio may be reversed due to a longer growing season. At the simplest level, a perennial cool-season, grass-like fescue and a perennial warm-season, grass-like bermudagrass should serve as the forage base. Adding more species makes the forage program more stable and dependable over time.

Individual pastures can be single forage species or simple mixtures. It is not necessary to have complex forage mixtures in each pasture. In fact, complex multi-seasonal forage mixtures within individual pastures are not desirable for all pastures because it complicates management during weather extremes. However, a robust combination of warm- and cool-season forage species in different pastures across the farm is desirable to improve forage availability.
Various forages can be used to fill out a grazing program. The following table shows typical grazing periods for different forages.

Seasonal Grazing Distribution of Common Forages and Forage Mixtures for Three 100 Day Seasons With a 65 Day Winter

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tall fescue</td>
<td>65</td>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Stockpiled fescue – winter grazing</td>
<td>60</td>
<td>10</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Orchardgrass</td>
<td>65</td>
<td>20</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Annual ryegrass</td>
<td>85</td>
<td>0</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Small grains</td>
<td>80</td>
<td>0</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cool-Season Grass/Legume Mixtures</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fescue/clover</td>
<td>55</td>
<td>20</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Fescue/lespedeza</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Orchardgrass/alfalfa</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Warm-Season Grasses</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahiagrass</td>
<td>25</td>
<td>70</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Bermudagrass</td>
<td>20</td>
<td>70</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Stockpiled bermuda</td>
<td>20</td>
<td>50</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Crabgrass</td>
<td>5</td>
<td>90</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Dallisgrass</td>
<td>15</td>
<td>75</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Native warm-season grasses</td>
<td>20</td>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Warm-Season Grass Mixtures</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bermuda/annual clovers</td>
<td>35</td>
<td>60</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Bermuda/ryegrass</td>
<td>40</td>
<td>50</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Bermuda/small grains</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Bermuda/fescue</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

Specific Renovation Scenarios

Renovating KY-31 toxic fescue to novel endophyte fescue

Situation: Tall fescue and orchardgrass suffered the greatest stand loss of all grasses. Much of the fescue is the variety KY-31, and it is infected with the toxic endophyte.

Opportunity: This is a chance to convert damaged toxic KY-31 pastures to other nontoxic forages. Thin and weakened fescue will be easier to kill than healthy, robust stands. Use the spray-smother-spray technique (S-M-S) to finish off the old stand. The spray-smother-spray method has been a reliable method for renovating toxic fescue pastures and can begin in the fall or spring. If starting renovation in fall, apply a nonselective herbicide (e.g., glyphosate) to the actively growing fescue during fall (September to late October) and no-till drill a small grain for winter/spring forage. Do not plant annual ryegrass because natural reseeding from ryegrass will cause
severe competition later when novel endophyte fescue is planted. Follow the harvest of the small grain forage in late spring with a second herbicide application. Continue the renovation process by no-till drilling a summer annual such as pearl millet. The summer annual forage provides heavy shade and competition for any remaining fescue plants and can be harvested for hay or grazed. In fall, after harvest of the summer annual, apply herbicide again to kill any remaining KY-31 fescue and the summer annual forage. No-till drill the novel endophyte fescue. For spring renovation, start in late April to early May when fescue is actively growing and before any new seed is produced. Clip or graze the fescue to a height of 4 to 6 inches, and apply a nonselective herbicide such as glyphosate. After the fescue topgrowth dies down, no-till plant a summer annual forage, such as pearl millet or sorghum-sudan. After the final harvest of the annual forage in late summer, follow up with a second herbicide application. The field can be planted with NE+ fescue or other cool-season grass in the fall. Currently, NE+ fescue variety/endophytes on the market include MaxQ (2001, Pennington Seed, Madison, Georgia), Texoma MaxQ II (2011, Pennington Seed), BarOptima (2009, Barenbrug USA, Tangent, Oregon) and two new ones from Arkansas research called Estancia with Arkshield (2011, Mountain View Seeds, Salem, Oregon) and DuraMax with Armor (2011, DLF International, Halsey, Oregon).

Renovating KY-31 toxic fescue to warm-season grass

Situation: Tall fescue and orchardgrass suffered the greatest stand loss of all grasses. Much of the fescue is the variety KY-31, and it is infected with the toxic endophyte. Fescue-dominant forage systems can often benefit from addition of warm-season grasses. Bermudagrass, crabgrass or native warm-season grasses are options to consider.

Opportunity: Use the spray-smother-spray technique previously described to finish off the old fescue stand. If starting renovation in fall, apply a nonselective herbicide (e.g., glyphosate) to the actively growing fescue during fall (September to late October) and no-till drill a small grain or ryegrass for winter/spring forage. In May, graze the winter annual forage to 3 to 4 inches and apply a second herbicide application. At that point, a warm-season grass such as bermudagrass or even native warm-season grass can be planted if desired. If a winter annual forage is not planted in fall, herbicide application can be delayed until March to kill fescue and winter annual weeds.

A second herbicide application can be made in May prior to planting the warm-season grass.

Renovating bermuda or bahia to cool-season grass

Situation: Bermudagrass was severely damaged on many farms. On farms with dominant warm-season grass pastures and where cool-season grass is needed, consider planting a novel endophyte fescue. Novel endophyte fescue helps extend the grazing season and does not cause fescue toxicosis like KY-31 fescue.

Opportunity: Use the spray-smother-spray technique to finish off the old bermudagrass stand. Bermudagrass is not tolerant of heavy shade, so maintaining a tall canopy of other forages helps eliminate the bermuda stand. If starting renovation in fall, apply a nonselective herbicide (e.g., glyphosate) and no-till drill a small grain for winter/spring forage. Do not plant annual ryegrass, because natural reseeding from ryegrass will cause severe competition later when novel endophyte fescue is planted. Follow the harvest of the small grain forage in late spring with a second herbicide application. Continue the renovation process by no-till drilling a summer annual such as pearl millet. The summer annual forage provides heavy shade and competition for any remaining bermuda plants and can be harvested for hay or grazed. In fall after harvest of the summer annual, apply herbicide again to kill any remaining bermuda and the summer annual forage. No-till drill the novel endophyte fescue. For spring renovation, start in late April to early May when warm seasons begin growing and before any new seed is produced. Clip or graze the pasture to a height of 4 to 6 inches, and apply a nonselective herbicide such as glyphosate. After the topgrowth dies down, no-till plant a summer annual forage such as pearl millet or sorghum-sudan. After the final harvest of the annual forage in late summer, follow up with a second herbicide application. The field can be planted with NE+ fescue or other cool-season grass in the fall.

Managing pasture improvement on the 300 Days Grazing Program demonstration

Situation: A fall-calving cow herd is managed as part of the 300 Days Grazing Program at the Batesville Research Station. Drought damage was severe in some KY-31 fescue pastures. The novel endophyte fescue pasture survived surprisingly well. Fescue is stockpiled each year for winter grazing, but fescue foot in the cattle has been a recurring problem. Clover has been added to the KY-31 pastures but has not eliminated the fescue foot problem.
Opportunity: One 17-acre KY-31 fescue pasture showed a stand loss of about 80 percent following the summer drought. The decision was made to convert it to novel endophyte fescue. This will provide high quality forage and will not cause fescue foot or other fescue toxicity problems. The S-M-S technique is being used. The field was sprayed and planted with wheat in October 2012 for winter/spring grazing. The novel endophyte fescue will be planted in fall 2013. The wheat will replace spring grazing lost from conversion of the previous fescue stand. A second pasture that had been largely unproductive and weedy was planted with wheat and forage brassicas to provide fall and winter grazing in place of the toxic fescue. That field will be converted to other perennial forage in 2013. More clover will be reseeded in other thin fescue fields to improve forage quality and further reduce fescue toxicity. Addition of more novel endophyte fescue and clover will improve forage quality, will greatly reduce fescue toxicity problems and will reduce N fertilizer need.

Small Ruminant Workshop

Basic Care of Goats and Sheep

April 6
9:30 a.m. - 3:00 p.m.
Silver Hill Farms, St. Joe, Arkansas

Cost: $5 Pre-Register
$10 Day of Event
Free – NAMGA Members

Go to www.arkansasmeatgoat.com for pre-registration informaton.

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30</td>
<td>Registration</td>
</tr>
<tr>
<td>9:55</td>
<td>Welcome</td>
</tr>
<tr>
<td>10:00</td>
<td>Injections/Hoof Trimming</td>
</tr>
<tr>
<td>10:30</td>
<td>Castrating and Disbudding/Livestock Guard Animals</td>
</tr>
<tr>
<td>11:00</td>
<td>Body Condition Scoring/Q&A Time</td>
</tr>
<tr>
<td>11:30</td>
<td>Lunch (Provided by NAMGA)</td>
</tr>
<tr>
<td>12:15</td>
<td>Parasites/Parasite Prevention</td>
</tr>
<tr>
<td>1:00</td>
<td>Pasture Walk</td>
</tr>
<tr>
<td>1:00</td>
<td>Plant/Weed ID</td>
</tr>
<tr>
<td>1:00</td>
<td>Pasture Inventory</td>
</tr>
<tr>
<td>1:00</td>
<td>Grazing Tips</td>
</tr>
<tr>
<td>1:00</td>
<td>Fencing</td>
</tr>
</tbody>
</table>

Bring a lawn chair!

Sponsored by
North Arkansas Meat Goat Association
Arkansas Cooperative Extension Service
March 9 – Goat and Sheep Producers Buying Station, Duckett Farms, 146 Hwy. 174N, Hope, Arkansas. Contact Jesse Duckett at 870-703-7321.

March 23 – Southwest Missouri Sheep and Goat Conference (9 a.m. to 3 p.m.) at the McDonald County Fairgrounds, 100 Mustang Lane, Anderson, Missouri (near intersection of Hwy. 76 and 718 and adjacent to the high school). Topics include:
1) Interactive session on basic knowledge of sheep and goats,
2) Profit with sheep and goats,
3) Why consider hair sheep,
4) Panel of producers on how to make money with sheep and goats,
5) Diseases of sheep and goats,
6) How to diagnose internal parasites and
7) Fencing and facilities for sheep and goats.
For those who pre-register before March 19, the cost is $10 per person for the conference with lunch. Simply mail your registration information to the Newton County Extension Center, Smith Hall (Crowder College), 601 Laclede Avenue, Neosho, Missouri 64850. Registration is $15 at the door on the day of the event. You may also contact the Newton County Extension Center at 417-455-9500 or e-mail simkinsv@missouri.edu to register or for more information.

March 28 – Fecal Egg Count and FAMACHA Workshop (hands-on) from 10 a.m. to 3 p.m. at the Phillips County Fairgrounds in Marvell, Arkansas. Contact Arlanda Jacobs at 870-714-5531 to register.

April 6 – North Arkansas Meat Goat Association Meeting and Goat Clinic (9:30 a.m.) at Silver Hill Farms in St. Joe, Arkansas.

April 13 – Goat and Sheep Producers Buying Station, Duckett Farms, 146 Hwy. 174N, Hope, Arkansas. Contact Jesse Duckett at 870-703-7321.

April 30 – Abbreviated FEC and FAMACHA Workshop for 4-H’ers, Faulkner County Natural Resources Office, Conway, Arkansas. Contact Leigh Helms at 501-329-8344.

April 20-21 – Arkansas Meat Goat Association 5th Annual Arkansas Classic, Clark County Fairgrounds, 1201 Highway 67S, Arkadelphia, Arkansas 71923. Three ABGA shows – two open shows Saturday, one Sunday. Check-in time noon till 7:30 p.m. April 19. Entry fee $10 per class by April 13, late entry $20 per class, pen fee $5. ABGA judges to be announced. Contact Ronald Morrison at 870-270-4882 or mql4@windstream.net.

April 20 – Show Me Spring Spectacular, Missouri State Fairgrounds, 2503 West 16th Street, Sedalia, Missouri 65301. Two ABGA shows. Arrival time after 1 p.m. April 19. Check-in time 1 p.m. until 2 p.m. April 20. Entry fee $10 per class by April 12, late entry $20 per class, no pen fee. ABGA judge Joe Teal, Saturday morning. Contact Tracy Diefenbach at 816-533-2563 after 6 p.m. or tldief@gmail.com, http://www.mjbgq.com.

April 21 – Area 2 Junior ABGA Regional Show, Missouri State Fairgrounds, 2503 West 16th Street, Sedalia, Missouri 65301. Arrival time after 1 p.m., April 19. Check-in time 8 a.m. till 9 a.m. April 20. Entry fee $10 per class by April 12, late entry $20 per class, no pen fee. ABGA judge Kay Garrett. Contact Tracy Diefenbach at 816-533-2563 after 6 p.m. or tldief@gmail.com, http://www.mjbgq.com.

April 27-28 – Sixth Annual Diamond Classic, Pike County Fairgrounds, 535 Hwy. 8N, Glenwood, Arkansas 71943. Three ABGA shows. Entry fee $20 due by April 26. Arrival date April 26 and 27. Check-in time after 4 p.m. Friday and 7 to 8 a.m. on Saturday and Sunday. Half of entry fees paid back to division and overall champions in first and third shows. ABGA judges Jack Talley, Jesse Cornelius and Kay Garrett. Contact Mark Berry at 870-828-1734 or berrysqfharm@gmail.com, http://www.berrysqfharm.com.

April 30 – Abbreviated FEC and FAMACHA Workshop for 4-H’ers, Faulkner County Natural Resources Office, Conway, Arkansas. Contact Leigh Helms at 501-329-8344.

May 25 – All Breed Auction Sale, Goat and Sheep Producers Buying Station, Duckett Farms, 146 Hwy. 174N, Hope, Arkansas. Contact Jesse Duckett at 870-703-7321.

<table>
<thead>
<tr>
<th>Event Date</th>
<th>Event Name</th>
<th>Location</th>
<th>Fee Information</th>
<th>Contact Information</th>
</tr>
</thead>
</table>
| August 13 | Missouri State Fair, Missouri State Fairgrounds | 2503 West 16th Street, Sedalia, Missouri 65301 | Entry fee $8 due by July 1. Late entry fee $16 due by August 1. No pen fee.
| August 31 | North Missouri Meat Goat Producers | Litton AG Center, 10856 Liv 235, Chillicothe, Missouri 64601.
Two AGBA shows. Entry fee $10 due by August 24. Late entry fee $20. No pen fee.
ABGA judges Jesse Kimmel and Josh Taylor. Contact Tisha Diefenbach at 816-519-1668 or tisha_diefenbach@hotmail.com. | Contact Tisha Diefenbach at 816-519-1668 or tisha_diefenbach@hotmail.com. |
| September 7-8 | Southwest Missouri Boer Goat Classic | Vernon County Fairgrounds, 500 North Centennial Boulevard, Nevada, Missouri.
Shows at 10 a.m. and 2:30 p.m. on Saturday and 9 a.m.
on Sunday. Entry fee $20 by August 28, pen fee $5. Judges to be announced.
Contact Marla Sneed at 417-448-9615 or showgoats@sofnet.com. | Contact Marla Sneed at 417-448-9615 or showgoats@sofnet.com. |
| September 19-20 | Northwest Arkansas District Fair | Northwest Arkansas District Fairgrounds, 1400 Fairgrounds Road, Harrison, Arkansas 72601.
Junior Market Meat Goats and Junior Boer Goats.
Contact Robert McMahen at 870-577-1759 or robert@northarkboers.com,
http://www.northarkboers.com. | Contact Robert McMahen at 870-577-1759 or robert@northarkboers.com,
| September 21-23 | North Arkansas Meat Goat Association Fall Classic | Northwest Arkansas District Fairgrounds, 1400 Fairgrounds Road, Harrison, Arkansas 72601.
Two ABGA sanctioned open shows on Saturday and one on Sunday.
Early entry fee $15, early entry deadline September 15; late entry fee $20.
Check-in time 3 to 7 p.m. September 20. ABGA judges to be announced.
Contact Robert McMahen, 870-557-1759 or robert@northarkboers.com,
http://www.northarkboers.com. | Contact Robert McMahen, 870-557-1759 or robert@northarkboers.com,

Steven M. Jones, Associate Professor - Animal Science