Creep Feeding Small Ruminants: Some Things to Think About

Chelsey Kimbrough, Specialty Livestock/Youth Specialist

Creep feeding provides a way to supply extra nutrition to young kids and lambs while helping to facilitate weaning. It teaches young animals to eat and helps with rumen development.

Creep Ration

Kids and lambs prefer a ration that is finely ground and has small particle sizes. As they get older, the particle size should increase. It is important for the ration to be palatable, fresh and readily available. Some highly palatable rations include soybean meal and ground corn. Kids and lambs should be fed a high protein diet that can range from 14 to 18 percent crude protein. Urea should not be utilized as a protein source.

Creep Area

Whether in a barn or out in the pasture, the creep area should be placed in a high traffic area. This allows the kids and lambs to be naturally attracted to it. The creep gate should have openings big enough for the kids and lambs to get through, but small enough that the smallest ewe or nanny cannot get through.

Creep Ration

Kids and lambs prefer a ration that is finely ground and has small particle sizes. As they get older, the particle size should increase. It is important for the ration to be palatable, fresh and readily available. Some highly palatable rations include soybean meal and ground corn. Kids and lambs should be fed a high protein diet that can range from 14 to 18 percent crude protein. Urea should not be utilized as a protein source.

Other Things to Consider

- Include a coccidiostat to help prevent disease. Contact your local veterinarian to discuss options.
- The calcium-to-phosphorus ratio should be 2:1 to help prevent urinary calculi in male kids and lambs.
- Kids and lambs are susceptible to enterotoxemia (overeating disease, Clostridium perfringens Type C and D). It is important to have a good vaccination protocol in place to help with prevention.

What to Do With Those Trampled Hay Feeding Spots?

John Jennings, Professor and Extension Forage Specialist

This past winter will be remembered as the “year of mud.” Many producers started feeding hay early despite the late summer rain over most of the state. In some cases, pastures did not have enough time to recover from the summer drought to provide fall grazing or to rebuild the sod needed to support cattle during winter. A lot of hay moved up and down the highway in February and March as producers tried to finish the long winter hoping for an early spring. But the mud remained, and every place a hay bale was fed on the saturated ground, the grass sod was trampled into soup. Now the question is, Will the grass regrow in those spots?

(Continued on page 3)
Both commercial and purebred breeders require fast and accurate information for pregnancy status in cows and heifers. Veterinarians and reproductive specialists have been using ultrasound technology for more than 15 years to assist cattle breeders in reproductive management. Yearly, more than 30,000 evaluations are performed for cattleman in the Gulf Coast and Midwest.

Ultrasound operators have the ability to maximize information on each exam using palpation with addition of visualizing the uterus and its contents and the ovaries. During the examinations, the entire reproductive tract can be visualized and fetal heartbeat can be verified to confirm viability.

Utilizing ultrasound technology, cattle can be checked for pregnancy status as early as 28 days from breeding. Typically, 30 days after the end of a breeding season, cows are scanned rectally and determined to be pregnant or open. If pregnant, an accurate assessment can be made as to the day of conception and subsequent calving date. Modern ultrasound machines have the ability to accurately measure the fetus and display the gestation length and expected calving date. As with palpation, the accuracy diminishes as the pregnancy advances. Using ultrasound technology, the most accurate information on fetal age can be optimized between 30 to 100 days.

Ultrasound technology requires a little more planning and preparation than does regular hand palpation but will pay greater dividends down the road. It is more accurate than hand palpation, and fetal age and viability can be readily expressed visually. A covered squeeze chute with palpation cage and a constant supply of 110V electricity is required. With good facilities and assistance, 80 to 100 cows can be ultra-sounded per hour.

In addition, the ultrasound can be used to identify the fetal gender of the pregnant cow or heifer. Purebred breeders utilize the information to sell guaranteed female pregnancies in their sales, especially with ET-produced pregnancies. Commercial breeders have grouped their cattle and sold either all heifer pregnancies or bull pregnancies. This can add value to their offerings at sale time.

Things to remember when utilizing ultrasound technology:
- Herds can be sorted into monthly calving groups.
- Fetal gender can be determined 63 to 85 days of gestation.
- Open cows can be culled or managed differently.
- Electricity is needed.
- Covered chute is preferred.

In the future the University of Arkansas, Southwest Research and Extension Center, will offer training workshops in using ultrasound technology to veterinarians and cattle owners to determine pregnancy status in cattle.

---

The 2019 Arkansas 4-H State Roping Event was held March 15 in Benton at the Saline County Fairgrounds. Events included Goat Tying, Tie Down Roping, Breakaway Roping and Team Roping.

Results for the All-Around awards are pictured, left to right: Junior Girl All-Around: Addison W., Poinsett County; Senior Girl All-Around: Kinsley W., Faulkner County; Senior Boy All-Around: Witt W., Hot Spring County; Junior Boy All-Around: Kix L., Sevier County.

Congratulations to these winners on a job well done!
Some will try to burn the old uneaten hay, some will pull a drag or disk to smooth over the hay feeding spots and some will leave the spots alone. By most observations, whatever is done, the hay feeding spots tend to become weed patches in summer that are full of pigweed and other undesirable plants. Looking at it from the outside reveals why — the hay spot is trampled, with no forage competition, and lots of soluble nutrients from hay, manure and urine. It’s a fantastic garden for weeds to grow. What is the answer to this problem?

In 2010, we conducted on-farm demonstrations to determine how much fertility is added to pastures through hay feeding, and we also tried overseeding hay feeding spots with a desirable forage. We tested the soil fertility in small-lot areas where hay was fed year after year and compared that to the general pasture fertility on the farm. The average soil test phosphorus was 450 pounds per acre in the annual hay feeding pen, and the soil test potassium was 1,643 pounds per acre. However, fertility was much lower in the pastures with soil test P of 186 pounds per acre and soil test K of 232 pounds per acre.

We did simple demonstrations to determine if hay feeding would improve soil test levels after one year. Pastures were soil tested before and after the winter hay feeding season.

For farm demonstrations where hay was unrolled for feeding, the soil phosphorus increased by 15 pounds per acre and soil potassium increased by 159 pounds per acre in the hay feeding area after one hay feeding season. Soil organic matter tests increased by almost 1 percent. Of course, these are average increases with some demonstrations showing higher fertility increases and some showing nearly no change. The point is that hay feeding is a potential fertility source, so some thought should be given to hay feeding locations each year to take advantage of that fact.

Now back to the original point of what to do with these trampled bare hay feeding spots. In many of these same farm demonstrations, we broadcast seed into some hay feeding spots and compared what was growing there by early summer with unplanted hay feeding spots.

Crabgrass or clover overseeded into hay feeding spots quickly populated the sites. On one farm, crabgrass and clover were overseeded into the bare hay feeding spots in March. Stand counts in early summer showed crabgrass and clover percent at 81 percent with very few weeds, whereas crabgrass percent was only 15 percent in unseeded hay spots with no clover and a high percent of weeds.

On another farm, white clover was overseeded into the bare hay feeding spots, and counts in later spring showed about a 70 percent stand of clover compared to about 40 percent ragweed in the unseeded spots. On a third farm, stand counts of crabgrass averaged nearly 100 percent in seeded spots. Unseeded spots had 42 percent weeds and undesirable plants. This is an easy fix for those bare spots and provides a reservoir of high quality forage that can spread throughout the pasture as cattle consume the seed of mature plants and move it around. Other forages such as bermudagrass, fescue could be planted as desired.