The changes to the Food and Drug Administration Veterinary Feed Directive regulations took effect on January 1, 2017. Resources are available through the National Cattlemen’s Beef Association website (www.beefusa.org/antibiotics) and the American Veterinary Medical Association website (www.avma.org) that outline the responsibilities of producers regarding the changes, but are producers actually prepared? Below is a series of questions that every producer should be asking himself/herself right now.

Do you have a veterinarian who works with your animals?

You can only answer “yes” if the veterinarian is licensed in Arkansas and the veterinarian has either examined at least one of your animals or has visited your farm in the past year. The veterinarian must also have medical records of the exam or visit to be compliant with the Arkansas Veterinary Medical Practice Act. If you have animals in Arkansas and another state, you must either arrange to have your veterinarian licensed in that other state or you will need a different veterinarian from that other state write a VFD order for your animals. The bottom line is that a VFD order can only be written by a veterinarian licensed in the state where the animals are located.

Do you know if any medicated feed on your property contains drugs that will change to VFD status on January 1, 2017?

A complete list of drugs can be found at www.fda.gov when you search “drugs transitioning to VFD status.” No matter when the medicated feed was purchased, the feed will require a VFD order from a veterinarian prior to feeding it to your animals. Otherwise, you could be found in violation of the federal regulations.

Do you know if you have any antibiotics that are meant to be mixed with water on your property?

Medically necessary antibiotics fed to animals through water will require a prescription from a veterinarian starting January 1, 2017. A complete list is on the FDA website and can be found by searching “drugs transitioning to prescription status.” The difference between a VFD drug and a prescription drug is that the FDA directly regulates VFD drugs and the state pharmacy boards regulate prescription drugs.

Do you have a plan for how you will store copies of your VFD orders?

If you are using VFD feed to treat animals, you must keep a copy of the VFD order for two years. A copy of the order must be made available to the FDA inspector if requested. The veterinarian will keep the original copy of the VFD order.

Do you have a plan on how to handle feed with expired VFD dates?

VFD orders will have a maximum of 6 months expiration date. Any feed in possession when the VFD expires must not be fed to animals until a new VFD order is written by a veterinarian. Meanwhile, a system should be in place to keep feed stored away from the animals until the new VFD order is obtained.
Do you manufacture feed for yourself or for other clients? Do you have a Medicated Feed Mill License to manufacture Category II VFD feeds?

Category II feeds contain drugs that require a strict, no tolerance withdrawal period. Category I feed has no withdrawal period.

Do you plan to mix your own VFD feed or distribute VFD feed to other clients? If so, have you submitted an Intent to Distribute VFD Feeds form to the FDA?

If you are mixing VFD feed for your own animals, you are considered to be a distributor by the FDA even though you are distributing to yourself. The FDA recognizes three types of feed. Type A feed is the raw, unmixed VFD drug. Type B feed is the VFD medication mixed with feedstuffs and requires dilution prior to feeding to animals. Type C feed is a final feed product that does not require further mixing. Producers who mix their own feed can purchase a Type B feed without a VFD order; however, a VFD order is needed for the producer to feed the final Type C feed to his/her animals. The bottom line is that anyone feeding a VFD feed to animals must obtain and keep a copy of a VFD order from a veterinarian.

Weed Control, Weed Control, Weed Control...

Dirk Philipp, Associate Professor - Forages

Weed control is something many landowners do not consider important, yet it is crucial for pasture productivity, forage growth and animal gains. I have heard the following arguments several times: “These weeds will complete their life cycle very soon anyway…, there are actually not that many weeds out there…, those weeds can easily be controlled with grazing….” Arguments like these are not helpful in keeping forages and pastures in optimal condition. Everything that has been known and practiced in a row crop situation for years seems to be completely elusive in grassland agriculture.

Maybe it’s because we deal with multispecies ecosystems in pastures that the occurrence of undesired plants doesn’t strike us as unusual. Managing perennial forages, such as fescue and bermudagrass, will invariably require a fair amount of tolerance, as maintaining these forages over the course of the growing season is challenging. It’s important to keep an eye on winter annual weeds, especially in the off-grazing season. Many farmers seem to believe since it’s not grazing season, weeds won’t do any harm.

We should be reminded that undesired plants such as weeds are fierce competitors for the scarce resources we actually have out there. Weeds will take up fertilizer and water that won’t be available to forage crops. In the worst-case scenario, weeds are poisonous to livestock. Some weeds are potentially lethal, like those that accumulate nitrates or prussic acid. Other weeds appear to be benign under regular grazing, but at some point, livestock may be forced to eat them, perhaps in hay, with disastrous consequences.

Here are few rules I learned over the years from experts and colleagues on how to tackle weeds in pastures.

Go out and spray on time!

If you walk out into your pasture and notice an abundance of weeds, it’s probably too late to get a good kill. As with any other plants, weeds are likely most vulnerable when they are small and rapidly growing. Case in point: pigweed should be treated when it’s smaller than about 4 inches high. At that growth stage, you won’t see it in your pasture as readily, but it’s already there. So go out and spray your pastures as early as you can.

It’s rarely too cold to spray!

Unless it’s freezing, herbicides work. Yes, weeds won’t grow as much in temperatures below 50 degrees, but winter annual weeds grow during the winter for obvious reasons. In fact, producers should take advantage of those days when not much else can be done and tackle weed control. In bermudagrass, weeds should ideally be sprayed in February or early March.

Spraying is less expensive than you think!

I understand that every penny counts and we are all frugal. But this is skimping on the wrong thing. Weed control can be as cheap as a few bucks per acre, so there’s no excuse for not investing a bit of money in a decent sprayer and regular weed control. There are many products on the market so cost-effectiveness is not a problem.

Be consistent with your weed control over the years!

Did I just mention being consistent over time? Yes, this is probably the most important strategy to get a handle on any weed problem. When you start, record the day and month of your application, amount and product, and carefully observe your success. Adjust according to the weather, but apply herbicide to a particular group of weeds consistently over the years. This goes back to the first observation that you should treat weeds on time. Be persistent and consistent with regard to weed control. Apply as early as you can over the years to permanently apply pressure on weed populations on your land.

It is worthwhile to ask your county extension agent to visit your place to help you identify weeds if in doubt. Develop an annual weed control plan and stick to it as much as you can. In addition, track your soil fertility meticulously to keep forages, your desired plants, within the optimum growing conditions on your pastures.
Herd longevity could be considered the most important selection trait with regards to bottom line profitability. It is also very difficult to identify because it is interrelated with many other traits. So trying to separate the traits affecting longevity can become challenging. Nonetheless, the ability of a calf to nurse unassisted is always an important issue that beef producers need to consider.

Udder quality should be at the forefront when it comes time to make culling decisions. Udder conformation is one factor that affects the ability of the calf to nurse. Calves can have difficulty nursing because of large teats and pendulous udder suspension. This can lead to several problems, including delayed consumption of colostrum or teat contamination with mud or debris from dirt lot or calving area. If teats are too big, it becomes difficult for newborn calves to nurse. Damage to teats because of poor suspension can also become difficult to manage. Producers cannot afford increased input costs related to time or labor in managing cows that need intervention at calving to strip out a quarter so that the calf can suckle or to prevent infection.

The Beef Improvement Federation has published a set of guidelines used to describe udder suspension and teat size scores. These are numerical values that reflect the differences in udder and teat quality. These scores are subjective and range from 9 (very tight suspension and very small teat size) to 1 (very pendulous and large teat size). According to the guidelines, these scores should be taken within 24 hours after calving, preferably by one person and on the weakest quarter.

Most commercial cowherds have udder scores that will range in the 5 for suspension and 5 for teat size on average. I would recommend producers score their cowherd each year and only keep heifers out of cows that are at least 5-5 but preferably 6-6 or better. Udder quality continuously declines with age; therefore, more aged cows get culled from the herd sometimes before they reach peak production age. Improving udder quality ensures the potential for cows to remain in the herd longer resulting in fewer replacements needed and more efficient and economical beef production. Improving udder quality can be beneficial to producers through reducing the amount of labor associated with assisting calves to nurse and increasing the number of calves weaned per cow.
Research aimed at improving the health of high-risk calves during receiving was recently reported in the 2016 Arkansas Animal Science Research Report Series. Jase Ball, graduate student at the University of Arkansas, compared 1.1 mL/100 lb body weight Draxxin to 2 mL/110 lb body weight Zactran given at arrival processing. The post-metaphylactic interval was 7 and 5 days, respectively, before additional treatments could be administered for BRD. While initial treatment was $7.69 less for Zactran compared to Draxxin, the Zactran-treated cattle had a greater occurrence of morbidity resulting in a greater number of additional BRD treatments. Overall therapy cost did not differ and averaged $36.02/calf. Overall weight gain did not differ between treatments and averaged 1.6 lb/d.

In a similar study, Draxxin (1.1 mL/100 lb calf weight) was compared to Micotil (1.5 mL/100 lb calf weight). Micotil did not have a post-metaphylactic interval before BRD treatment. Initial metaphylaxis cost was $12.55 less for Micotil, but the Micotil-treated calves had a greater occurrence of morbidity resulting in a greater number of additional BRD treatments. Overall treatment cost for metaphylaxis and additional treatments did not differ and averaged $31.83/calf. Weight gain during the receiving period was also similar between treatments and averaged 1.96 lb/d.

In a final study, Makenzie Foster evaluated calf response to an intranasal spray of a zinc solution. The zinc treatment was applied at a 3 mL volume of solution containing 36 mg zinc. Intranasal application of zinc did not improve growth rate or reduce morbidity during the 45-day receiving period. Overall morbidity averaged 69%.

For more detail on these studies and additional research topics, download the 2016 Arkansas Animal Science Research Report at http://arkansasagnews.uark.edu/638.pdf.