I have not seen many Japanese beetles this year. Be on the lookout because this pest will defoliate plants in short order. If you find an infestation, use a garden insecticide for chewing insects (acetamiprid or carbaryl). If you postpone control measures, the presence of a few will attract more and then you will be the place to go for the neighborhood Japanese beetle party. Observe all label precautions on mixing and use. Do not use dust formulations due to the problem with environmental concerns.

Weather conditions this past spring were ideal for the bacterium *Erwinia amylovora*, to survive and express its presence in our landscape. We know this garden problem as “Fire blight”. The disease cycle begins in the spring with the infection of blossoms or shoots, providing a future source of the bacteria in “holdover cankers” on infected plants. During wet weather in the early spring, bacteria ooze from these cankers and attract insects that spread the bacteria to other susceptible plants or plant parts. The bacteria are commonly carried to the blossoms, fruit, shoots and leaves by flying or crawling insects, including honeybees. Spread of the bacterium may occur by insects feeding and people using contaminated pruning tools. This infection process continues throughout the summer and into the fall. In the home landscape, resistant cultivars and selective pruning are the best methods of control for ornamental pears and other woody ornamentals. Chemical control is usually not successful since timing and coverage are very important for control. Because of the widespread occurrence of this disease on ornamental pear, one needs to consider an alternative tree for the landscape.

A common occurrence on oak trees is the formation of gall growths or deformities on leaves, twigs, buds, flowers, bark, stems, and even acorns and roots. It has been a banner spring for gall activity. Fortunately, most galls are harmless to trees. Oak galls are caused by a group of small insects known as gall makers. Galls are a part of the insect’s reproductive cycle and provide a protected enclosure for development of offspring (larvae). The gall is formed by the tree in reaction to insect-released chemicals or other stimuli, which incite plant hormones to form the gall. The inside of the gall is rich with protein and provides a source of concentrated food for the developing larvae. The types of galls and the insects causing them are specific to various types of oak. Some galls are round or lumpy, some spiny, others flattened and dish shaped. Sizes can range from a fraction of an inch to several inches in diameter. Often, the larger galls will grow together on stems forming large masses that weigh the branch down. The majority of gall makers are tiny wasps, though some are fly species. There have been more than 700 species of gall wasps documented in North America. Each species causes a distinct type of gall on a specific plant part. In some species, this habit skips a generation, with the offspring forming a different shaped gall on a different plant part, similar to its grandparent rather than its parent. To many, these galls are unsightly, but they are a part of the natural system associated with oak species which we have in the landscape. As part of the natural system, there will be high and low population cycles of gall maker insects. And, perhaps in a few years, these galls will be less prevalent than they are now.

Why is my oak tree dying? A quick answer is that the 2 consecutive years of drought did them in. The more complex answer is that a disease caused predominately by the fungi *Hypoxylon tinctor* and *Hypoxylon atropunctatum*, is killing them. This disease is called Hypoxylon canker. These fungi are not considered aggressive “killers” but instead take advantage of stressed or declining hardwood trees. Infected trees can be in various habitats, including recent or well established residential areas and forest trees. Tree infection may occur as early as the seedling stage but can go unrecognized for years until the tree becomes stressed. Bark sloughs off the affected tree revealing a thin, powdery, greenish charcoal look. There is no cure for this disease, but stress avoidance is the most effective management strategy. The key ingredient to canker free trees is prevention. It is important to avoid tree wounds. Construction injury, herbicide damage and site related stresses (drought, etc.) contribute to disease onset. Homeowners need to promote vigorous plant growth by keeping trees well hydrated. Ideally, soak trees weekly simulating a one inch rainfall.