Southwest Arkansas once again experienced a wetter than normal spring in 2016. Average highs were also lower than normal. Many have found that this different weather pattern has created the conditions new or at least non typical pests to appear. Several gardeners have submitted samples of plant tissue, insects, and diseased fruit for identification. The summer heat has now arrived and a whole new set of problems will begin to appear. Hopefully we can stay ahead of the game and save our crops from damage.

Tomatoes seem to have been hit hard in Arkansas. According to Horticulture IPM Extension Specialist, Dr. Jackie Lee, late blight has been found at a higher rate than normal. Typically the Plant Disease Diagnostic Lab sees around 4 cases of late blight and have seen well over 20 cases over the last month.

Several rose questions have also come through the office lately. Our June weather created idea conditions for diseases such as rose rosette disease (RRD) and black spot. RRD is a virus, whereas, black spot is a fungus. Both can be controlled by good sanitation practices and removing damaged tissue from the area. A spray program is highly encouraged to keep diseases and the vectors who spread them at bay.

Another issue we have seen in the office is fire blight. This disease is particularly hard on apples and pears. A distinguishing characteristic of fire blight is the shepherd’s crook at the tip on the twig. Fire blight is among the most difficult of diseases to control. By far the most effective control is planting resistant cultivars. The most susceptible apples include York, Rome, Jonathan, Jonagold, Idared, Tydeman’s Red, Gala, Fuji, Braeburn, Lodi and Liberty. Stayman and Golden Delicious cultivars are moderately resistant. Red Delicious, Winesap, Haralson, Liberty, Prima, Priscella, and Redfree apples are highly resistant. Susceptible pears include Bartlett, Bosc, D’Anjou and Clapp’s Favorite, while Magnes, Moonglow, Maxine and Seckel are highly resistant. Most Asian pears are moderately to highly susceptible with the exceptions of Seuri, Shinko and Singo pears. Susceptible trees should be sprayed at green tip, at 5% bloom and at 50% bloom with Agri-strep, Agri-mycin or a copper fungicide such as Kocide. All dead tissue should be pruned out 10 – 12 inches below the damage. Cutting tools should be dipped between cuts in a 10% bleach solution, (nine cups water to one cup bleach) or in 70% alcohol.

Now that the summer is here, producers and homeowners can expect plants to have difficulty handling the drier weather. Cool, wet springs cause plants to develop shallow root systems. To encourage root growth, water for longer periods of times a couple of times per week.
Interseeding cool season small grains into existing warm season pastures

Planting cool season grasses for winter feeding can be a cost effective, time saving investment for cattlemen. Dr. Paul Beck shared some of his finding with ag agents recently at the Southwest Research and Experiment Center in Hope. The typical interseeding timeline occurs from Oct 1– Oct 20. Early planting can prove to be beneficial, but requires more labor and cost. In order for most area producers to plant from Sept 15– Oct 1, an application of glyphosate will likely need to be made. Seeding rate for either planting are typically 100-120 lb small grain (rye, wheat, oats) plus 20 lbs of ryegrass per acre. Followed by Phosphorus and Potassium to test recommendation and 50 lbs of Nitrogen fall and spring.

The other half of the winter grazing equation is stocking rates. As a rule of thumb, producers should aim for 1,000-2,000 lbs of forage dry matter per 400 lb calf. Typically, forages yield around 200 lb/ ac per inch. Therefore, forages should be approximately 5”- 6” before allowing livestock to graze. A pasture with 3,000 lbs forage dry matter could support 1.3-1.5 calves/ac with 2.5 lb ADG. Feeding small grains provides a great alternative to traditional hay or mixed rations while also saving precious time normally spent feeding in the winter.

It’s almost time to start planting for fall grazing

By Dave Edmark
The Cooperative Extension Service
U of A System Division of Agriculture

LITTLE ROCK – When it’s 100 degrees outside, winter may seem ages away, but planning for fall grazing and winter forage needs to start long before the mercury drops.

Brassicas need to be planted in late August to early September to provide grazeable forage by late October, according to John Jennings and Paul Beck, animal science professors at the University of Arkansas System Division of Agriculture.

Forage brassica, which can be grazed through December, work well in combination with ryegrass that produces forage for spring grazing. “Forage brassica varieties are much more productive than garden-type varieties,” Jennings said.

Planting small grains and ryegrass can be done in September through November to be ready for grazing at staggered times of the winter months.

To be ready for grazing by early November, small grains and ryegrass must be planted by Sept. 15 on a tilled seedbed or no-till into harvested crop fields.

To enable grazing by early December, producers should plant winter annuals in crop fields from Sept. 15 to Oct. 1 or interseed them into warm-season grass sod.

Fertilizer application for late plantings can be delayed until February since growth potential is limited during mid-winter.

Beck recommended that farmers plant one-tenth of an acre per cow per day of the week to be grazed through the winter. If cows are limited to grazing three days a week, a farmer should plant three-tenths of an acre per cow. That would add up to 15 acres for 50 cows.

Research by Beck has shown that cows performed well when they were limited to grazing on winter annuals to two eight-hour days a week, and were fed hay the remaining time.

“As forage growth increases during the early spring, cows can be allowed to graze more frequently,” Jennings said. “This is an effective way to match the increased nutrient requirements of spring calving cowherds and to supplement low quality hay. Some acres can be planted early for fall/winter and spring pasture and other acres can be planted in October for spring grazing to match herd needs.”

Do you have a sample for us?

UAEX provides great diagnostic and analytic services. From fruits and vegetables to soil and water we have a lab to help you with just about anything.

Bring your sample by our office at
100 Court Street, Suite A
Murfreesboro, AR
8:00-4:30
Monday-Wednesday

Sorry, we do not ship on Thursday or Friday
It is my first summer as an Ag Agent and I have discovered how busy life can be! Seeing first hand the hard work and dedication our producers invest into their family farms makes me proud to be an agent. Our goal is to help make your operation more profitable and efficient. Remember to feel free to contact our office for assistance when you run into an obstacle on your farm, garden, or yard. I know I say it many times, but our publications can be of great assistance in making farming life better. Come by the office or visit uaex.edu to print off a copy anytime of the day.

We will be planning a new year of programs, demonstrations, and trainings soon. We would love to have your input to make this YOUR extension service. We provide services to every citizen of Pike County, most of which are free. We want our efforts to be useful and meaningful. In the past year, we have covered issues from financial planning to feral hogs. We cover topics related to animal and plant production, turf, gardening, ponds, forestry, and wildlife. If you have a issue or technology you would like us to consider, call the office or send an email to tadavis@uaex.edu.

Terrell Davis, Staff Chair/Ag Agent

4-H SPOTLIGHT

This newsletter puts the spotlight on our livestock kids. Throughout the spring and summer months these kids work hard raising livestock projects for the fall fairs. Show kids learn valuable life lessons with these projects. We are proud of the dedication and hard work these kids put into raising a quality animal.

We recently conducted a day camp focused on livestock projects. We had 27 youth participate in the program. They learned about nutrition, grooming, showmanship, and animal behavior. Thanks to our sponsors and parents for making this a successful event.

Table 2. Nutrient Requirements of a Mature Beef Cow (adapted from Beef Cattle Nutrition Series, Part 2: Establishing Nutritional Requirements, FSA3079)

<table>
<thead>
<tr>
<th>Group</th>
<th>CP % DM</th>
<th>TDN % DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100 lb cow, early lactation (20 lb peak milk)</td>
<td>11</td>
<td>60</td>
</tr>
<tr>
<td>1100 lb cow, mid-lactation</td>
<td>9</td>
<td>56</td>
</tr>
<tr>
<td>1100 lb cow @ calf weaning, mid-gestation</td>
<td>7</td>
<td>47</td>
</tr>
<tr>
<td>1100 lb cow @ late gestation</td>
<td>8</td>
<td>52</td>
</tr>
</tbody>
</table>

Terrell Davis, Staff Chair/Ag Agent
Using clovers in your forage program

I have fielded many questions about clovers recently. So I decided to add a condensed version of FSA 3137, Annual and Perennial Forage Clovers in Arkansas, to the newsletter. If you have questions about varieties or establishing clovers, feel free to call the office.

Clovers and other legumes are highly desirable species in pastures and hay meadows. Clovers are beneficial additions to many forage programs because of improved forage growth distribution, increased forage yield, increased forage quality and reduced nitrogen fertilizer costs. These benefits lead to increased animal performance and profitability of the livestock enterprise. Winter annual clovers are considered better adapted to soil and environmental conditions in southern Arkansas than perennial clovers. Perennial clovers are slower to establish than annuals and are not very long-lived in the hot, humid Coastal Plains region of southern Arkansas.

Establishment

The first step in successful establishment of clovers is proper site selection. Factors such as soil texture and drainage should be considered when matching a clover species to a specific site. Select a site well in advance so weed management and improvements in soil fertility and pH can take place. Weeds should be suppressed using a herbicide with short residual activity such as 2,4-D or Weedmaster. Soil samples should be collected and analyzed so that any required phosphorus, potassium or lime can be added well in advance of planting. Soil pH should be near neutral (> 6.0). When clovers are to be planted in acidic soils, lime should be applied at least 6 months before seeding to allow the soil pH to adjust. Most clovers respond to improvements in soil fertility. Potassium is a very important nutrient for clovers, and attention should be paid to supplying adequate amounts according to soil test recommendations. Phosphorus should also be applied according to soil tests. Many clover species will respond to boron fertilization at 1-2 lb/acre every one to two years, especially when grown on sandy soils. Nitrogen fertilizer application to clovers should be avoided as much as possible. When abundant soil N is available, clovers will use that instead of fixing their own N, which reduces one of the benefits of using clover in the first place. Also, when N is applied to grass/clover mixtures, the grass usually responds faster than the clover, which can lead to excessive shading of clover and its loss from the stand. If N fertilizer must be applied to keep grass productive, rates should be kept to 30 lb N/acre or less at each application. Clovers can be established by broadcasting or drilling seed into a grass sod or following tillage. Establishing clovers by broadcasting following tillage increased the clover stand counts by 41 percent in southern Arkansas. Stand counts were only 50 percent for clovers broadcast onto a mixed grass sod but increased to 91 percent with tillage. Seed should be planted shallow. It can be drilled to a depth of 1/4 to 1/2 inch or broadcast. Seeding rates should be increased by 20 to 25 percent if clovers are established by broadcasting seed. Clover seed should be inoculated with the correct species of rhizobia before planting to ensure good nitrogen fixation potential (see FSA2035). When interseeding clovers into a sod, it is important to remove existing forage to a height of 3 inches or less. Seeding in warm-season grass can be done as early as October 1 in northern Arkansas, otherwise October 15 to November 15 when cool nighttime temperatures (50 to 60 degrees F) slow grass growth and reduce competition. Because fescue grows vigorously in the fall, fescue sod must be grazed short or lightly disked to reduce competition before interseeding clovers. Late-maturing clovers (red or arrowleaf) grown with perennial warm-season grasses will reduce late spring growth of the grasses. Clovers may be shaded out if grasses are allowed to outgrow them, but may improve forage quality over grass alone. Early (crimson) and medium-maturing (berseem and rose) clovers can allow earlier grazing of perennial warm season grass pastures and will supply nitrogen to the grasses under proper management. Late-maturing clovers grown with cool-season grasses (tall fescue or small grains) can lengthen the grazing season, improve forage quality and reduce the toxic effect of fungal endophytes found in fescue. Low-growing or prostrate clovers are generally more grazing tolerant than upright-growing clovers. Many clovers produce a percentage of “hard” seeds that do not germinate immediately after planting. The seedcoat of hard seed is impervious to water, which delays germination for long periods. Hard seed may survive passage through the digestive tracts of animals and can remain viable in soil for 30 years. Delayed germination by hard seed of annual legumes grown in harsh environments helps maintain stands from volunteer seedlings when conditions are not favorable for seed production in a particular year. Clover species that produce a high percentage of hard seed provide more dependable volunteer stands than those that produce more soft seed. Good stand establishment and forage production depend on a variety of factors including soil fertility, moisture, pH, seed-to-soil contact and inoculation of seed with nitrogen-fixing bacteria. (Refer to FSA2035, Forage Legume Inoculation, for information on inoculation of legumes.)

The University of Arkansas System Division of Agriculture offers all its Extension and Research programs to all eligible persons regardless of race, color, sex, gender identity, sexual orientation, national origin, religion, age, disability, marital or veteran status, genetic information, or any other legally protected status, and is an Affirmative Action/Equal Opportunity Employer.