RICE UPDATE

With the sweltering temperatures we have experienced recently, many ask how pollination of rice might be affected. Any extreme in temperatures, such as 50°F or less for two consecutive nights two weeks prior to and/or at flowering can cause excessive sterility or blanks. Also, strong winds, rain showers, fertilizer or pesticide applications while blooming is occurring (9 a.m. to 3 p.m.) can increase sterility. Furthermore, air temperatures > 95°F may increase blanking as well. Flowering of the rice panicle begins on the upper branches as they emerge from the boot and will continue down the panicle to the lower branches. Flowering of the entire panicle will take anywhere from four to seven days. The number of filled grains per panicle is primarily determined by conditions and events during this stage since only flowers fertilized can become filled grains.

Rice Stinkbugs

It is recommended that rice should be scouted weekly or preferably twice weekly beginning at 75% panicle emergence and continuing until grain maturity (30 to 35 days after 50 percent heading). Scouting in the morning hours between 8 to 11 a.m. or evening hours of 7 to 9 p.m. will provide better estimates of rice stink bug densities. Thresholds for rice stink bugs are listed below:

- 5 RSB per 10 sweeps the 1st 2 weeks after 50% heading.
- 10 RSB per 10 sweeps the 2nd 2 weeks after 50% heading.

Please consult the MP144 for the latest insecticide recommendations for controlling rice stinkbugs.

FIELD DRAIN TIME GETTING CLOSER

When to drain is always an interesting topic and there are many different opinions about it. Some of the growers I have talked to say draining is more of an art than a science, yet others say it is a combination of the two. Whatever your take on the matter, here are a few thoughts about draining from our Extension Rice Specialist, Dr. Jarrod Hardke. With heading for many fields in full swing it will be time to drain fields before we know it. As we all know ‘draining season’ is a time for celebration – work, but celebration. Before we get in too big a hurry to celebrate, let’s try to make sure we get it right.

The basic recommendations for draining are 25 days after 50% heading on long-grain cultivars and 30 days for medium-grain cultivars. These are the number of days built into the DD50 program.

However, depending on temperatures, rainfall, and overall environmental conditions, drain timing is a moving target. As a result, drain timing is as much an art as a science.

Generally when nearly all kernels are straw colored (field is safe to drain regardless of soil type); When nearly 2/3 of kernels are straw colored it is safe to drain on a silt loam soil; and when 1/3 of kernels are straw colored it would be close to safe for draining on a clay soil.

When choosing when to drain – always edge on the side of caution. Draining too early can sacrifice some late grain fill and hurt yield. Use a combination of the days after 50% heading guideline (25-30 days) and the relative grain maturity in the field to make your drain decisions.
**SOYBEAN UPDATE**

Many of the survey fields that I look at in the county are at R2-R5 growth stages. I know there are fields at R6 and some that are just beginning to flower or even earlier, so we have a wide range of growth stages in soybeans across the county. Since many of the beans in our county are highly managed we tend to see fields with Sudden Death Syndrome (SDS).

Sudden death syndrome is caused by a soilborne fungus, which overwinters as thick-walled spores in soil or crop residue. Infection may occur early as seedlings develop, but symptoms are not visible until plants have reached mid-reproductive stages of development. Symptoms are most severe at 68 to 77 °F. Hot, dry weather appears to slow SDS although severe disease has been reported under these conditions.

Disease development can be especially severe in fields that are also infested with soybean cyst nematodes, and disease is most problematic in cultivars that are susceptible to both the fungus and the nematode. Sudden death syndrome is usually most severe in saturated soils, and is often most severe near the header pipe in furrow irrigated fields or in low-lying areas in fields that are prone to standing water.

Other factors that increase disease severity are high fertility and soil compaction. Management options are limited for SDS and foliar fungicides are not effective at suppressing this disease. Delayed planting of fields with a history of SDS may be beneficial if saturating rains do not occur during early reproductive stages. Cultural practices that improve field drainage and crop rotation (2 yr.) with a non-host crop for soybean cyst nematodes may reduce severity of SDS.

While small larvae feed on new, tender leaves and blooms, larger larvae can be found on any part of the plant and will feed on leaves, stems or pods but prefer blooms. Small larvae are off-white in color, but larger larvae can vary in color from yellowish-green to green, pink, brown or even black, each having longitudinal light-colored lines along the body. Compared to armyworms, they generally have much more hair over the body. The head is most often orange in color. When disturbed, these larvae usually curl up into a “C” shape. Larvae, particularly small ones, are subject to high mortality from natural enemies. For this reason, pesticide treatment recommendations are generally aimed at medium and large larvae.

The most vulnerable time for soybean fields to have an infestation by the corn earworm is during bloom (R2 growth stage), which usually coincides with the second field generation. Fields should be closely monitored at this time, particularly fields that are blooming and have not achieved canopy closure. Treatment thresholds for corn earworms and other pests are listed in the MP 144.

Below is a table showing the number of corn earworm moths that have been found in traps near soybean fields. These numbers give an idea of what kind of flight numbers are being experienced. Scout fields closely to monitor for this pest!

**Lawrence County Soybean Moth Trap Numbers**

<table>
<thead>
<tr>
<th>Location</th>
<th>June 21</th>
<th>June 28</th>
<th>July 7</th>
<th>July 12</th>
<th>July 19</th>
<th>July 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portia</td>
<td>170</td>
<td>243</td>
<td>95</td>
<td>10</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>Minturn</td>
<td>80</td>
<td>213</td>
<td>30</td>
<td>20</td>
<td>82</td>
<td>135</td>
</tr>
<tr>
<td>Sedgwick East</td>
<td>60</td>
<td>85</td>
<td>17</td>
<td>37</td>
<td>250</td>
<td>150</td>
</tr>
<tr>
<td>Sedgwick West</td>
<td>26</td>
<td>180</td>
<td>10</td>
<td>2</td>
<td>110</td>
<td>63</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>336</strong></td>
<td><strong>721</strong></td>
<td><strong>152</strong></td>
<td><strong>69</strong></td>
<td><strong>445</strong></td>
<td><strong>383</strong></td>
</tr>
</tbody>
</table>

Best Wishes,

*Herb Ginn*

Herb Ginn
County Extension Agent
Staff Chair